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Abstract 28 

In the Northern Hemisphere, the seasonal snow cover plays a major role in the climate system via its 29 

effect on surface albedo and fluxes. The parameterization of snow-atmosphere interactions in climate 30 

models remains a source of uncertainty and biases in the representation of the local and global climate. 31 

Here, we evaluate the ability of an ensemble of regional climate models (RCMs) coupled to different 32 

land surface models to simulate the snow albedo effect over Europe, in winter and spring. We use a 33 

previously defined index, the Snow Albedo Sensitivity Index (SASI), to quantify the radiative forcing 34 

due to the snow albedo effect. By comparing RCM-derived SASI values with SASI calculated from 35 

reanalyses and satellite retrievals, we show that an accurate simulation of snow cover is essential for 36 

correctly reproducing the observed forcing over mid- and high-latitudes in Europe. The choice of 37 

parameterizations with first and foremost the choice of the land surface model but also the convection 38 

scheme and the planetary boundary layer, strongly influences the representation of SASI as it affects the 39 

ability of climate models to simulate snow cover correctly. The agreement between the datasets differs 40 

between the accumulation and ablation periods, with the latter one presenting the greatest challenge for 41 

the RCMs. Given the dominant role of land surface processes in the simulation of snow cover during 42 

the ablation period, the results suggest that the choice of the land surface model is more critical for the 43 

representation of SASI than the atmospheric model during this time period.   44 
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1. Introduction 45 

Snow is an important part of the climate system as it regulates the temperature of the Earth’s 46 

surface via its effect on surface albedo and surface fluxes. In mid- and high-latitude regions, snow is the 47 

main interface through which land interacts with the atmosphere during the cold season and the 48 

importance of snow-atmosphere interactions in modulating the energy budget at high latitudes during 49 

winter has been demonstrated (Diro and Sushama, 2018; Henderson et al., 2018; Xu and Dirmeyer, 50 

2013). Snow cover extent and depth can modify both surface energy and moisture budgets, triggering 51 

complex feedback mechanisms that impact both local and remote climates (Diro and Sushama, 2018). 52 

In particular, snow can have a strong impact on climate due to its high albedo, primarily because of the 53 

contrast in the surface energy balance between snow-covered and snow-free land surfaces (Qu and Hall, 54 

2014). Reciprocally, with climate change, rising temperatures are already altering the Earth’s snow 55 

amount and occurrences, for example shortening the snow season in Eurasia (Ye and Cohen, 2013; 56 

Gobiet et al., 2014; Mioduszewski et al., 2015; Beniston et al., 2018; Matiu et al., 2020). In this context, 57 

it is crucial to better understand snow-atmosphere processes and the ability of climate models to 58 

represent them.  59 

The direct impact of snow on the atmosphere is known as the snow albedo effect (SAE; Xu and 60 

Dirmeyer, 2011, 2013), where the presence of snow affects the land surface energy budget and 61 

influences the local climate, modifying air temperature. To quantify the contribution from the SAE to 62 

the snow-atmosphere coupling, Xu and Dirmeyer (2011) developed the Snow Albedo Sensitivity Index 63 

(SASI). This index combines incoming shortwave radiation with snow cover variability to quantify the 64 

snow-albedo coupling strength, i.e. SASI estimates the degree to which the atmosphere responds to 65 

anomalies in snow cover. Applying SASI to satellite observations, Xu and Dirmeyer (2011) found that 66 

the coupling between snow and albedo is particularly strong during the snowmelt period in the Northern 67 

Hemisphere. At high-latitudes, for example, the effects of snow cover on the climate is strongly related 68 

to the way vegetation cover is prescribed. Removal of boreal forests locally reduces surface air 69 

temperature and precipitation by increasing surface albedo and decreasing plant evapotranspiration. The 70 

strength of the coupling between snow and the atmosphere is determined by processes involving 71 
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radiative fluxes but also hydrology. Therefore, Xu and Dirmeyer (2013) also defined the snow 72 

hydrological effect (SHE), which is a result of soil moisture anomalies from snowmelt. Through land-73 

atmosphere interactions, they have a delayed impact on the atmosphere. Besides these direct and indirect 74 

effects, positive and negative snow-atmosphere feedbacks, such as the snow-albedo feedback (SAF; Qu 75 

and Hall, 2007; Fletcher et al., 2015; Thackeray et al., 2018) can amplify anomalies. The SAF represents 76 

changes in surface albedo from cooling (warming) that can cause decreases (increases) in absorbed solar 77 

radiation, amplifying the initial cooling (warming). It is an important driver for regional climate change 78 

in Northern Hemisphere land areas.  79 

Here, we investigate the ability of an ensemble of RCMs to represent snow cover and the 80 

radiative forcing from the snow albedo effect (SASI) over Europe, including a comparison between mid- 81 

and high-latitude regions. We derive SASI using radiative fluxes and snow cover from satellites, 82 

reanalysis and model outputs. Building on findings by Xu and Dirmeyer (2011, 2013), we focus on 83 

winter and spring seasons, i.e. transitioning from the accumulation to the ablation period, when SASI is 84 

reaching a maximum. While some previous studies have investigated snow-atmosphere processes in 85 

climate models for specific regions (e.g. European Alps; Magnusson et al., 2010; Matiu et al., 2019; 86 

Lüthi et al., 2019), the literature remains limited. Here, we use the RCMs outputs from the flagship pilot 87 

study Land Use and Climate Across Scale (LUCAS; Rechid et al., 2017; Breil et al., 2020; Davin et al., 88 

2020; Reinhart et al., 2020; Sofiadis et al., 2021). It is endorsed by the Coordinated Regional Climate 89 

Downscaling Experiment (CORDEX) of the World Climate Research Programme (WCRP) over the 90 

European domain (EURO-CORDEX, Jacob et al., 2020) and it enables us to perform a broader 91 

assessment of several RCMs within a consistent framework. Our assessment is carried out in two parts 92 

and published in companion articles. In Part I, we investigate the ability of these RCMs to represent the 93 

SASI under present-day land cover distribution, while in Part II we explore the effects of large-scale 94 

changes in vegetation cover. In LUCAS, each RCM performed three coupled land-atmosphere 95 

experiments at the European scale: two idealized and intensive land use change experiments (GRASS 96 

and FOREST) and a control experiment (EVAL). The GRASS and FOREST experiments will be 97 
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examined in the companion paper (Part II) while here, we use ten models from the EVAL experiment 98 

only, which employ their standard land use and land cover maps.  99 

Section 2 introduces the modeling and observational datasets used in this study as well as the 100 

derivation of SASI, while Section 3 examines and discusses the ability of climate models to represent 101 

SASI compared with satellite observations and reanalyses, focusing on the strength and timing of the 102 

signal. Further, the origin of the differences between the models are explored by evaluating potential 103 

common biases in the ensemble of simulations as well as individual model biases. The analysis also 104 

explores the differences in SASI between mid- and high-latitude regions, opening the discussion on the 105 

impacts of different land cover for the simulation of SASI, which will be further explored in Part II. 106 

Finally, Section 4 the last sections offer some concluding remarks.  107 

2. Data and methodology 108 

2.1 LUCAS experiments and models  109 

2.1.1 The LUCAS experiments 110 

The simulations from the flagship pilot study LUCAS simulations cover the standard EURO-111 

CORDEX domain (Jacob et al., 2014) with a horizontal grid resolution of 0.44° (around 50 km). All 112 

RCMs in LUCAS use a rotated coordinate system except the RegCM model, which applies a Lambert 113 

conformal projection (suitable for mid-latitudes) on a regular grid. Here we use outputs from the EVAL 114 

experiment, which employ land use and land cover maps; the GRASS and FOREST experiments will 115 

be examined in the companion paper (part II). All simulations span the period 1986–2015 (with a spin-116 

up period ranging from one up to six years depending on the model) and take lateral and boundary 117 

conditions from the ERA-Interim reanalysis (Dee et al., 2011). More details can be found in Davin et 118 

al. (2020).  119 

2.1.2 Models and configurations  120 

We use outputs from ten coupled surface-atmosphere RCM simulations that participated in the 121 

LUCAS project. The main model characteristics that are important for snow albedo coupling are 122 

summarized in Table 1. The model ensemble presents five different RCMs: COSMO-CLM version 5.0-123 

clm9 (Sørland et al., 2021), WRF version 3.8.1 (Skamarock et al., 2008), RegCM versions 4.6 and 4.7 124 
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(Giorgi et al., 2012), RCA4 (Strandberg et al., 2015) and REMO (Jacob et al., 2012). These RCMs 125 

contributed with different setups and configurations as described in Table 1. For example, the same 126 

RCM is coupled to different land surface models (LSMs): COSMO-CLM is coupled to three distinct 127 

LSMs, which are CLM5.0 (Lawrence et al., 2020), VEG3D (Breil and Schadler, 2017) and TERRA-128 

ML (Schrodin and Heise, 2002). WRF is coupled with either CLM4.0 (Oleson et al., 2010) or NOAH-129 

MP (Niu et al., 2011). Vice versa, the same LSM is combined with different versions of RCMs. The 130 

CLM4.5 (Oleson et al., 2013) LSM is coupled to two distinct versions of RegCM (4.6 and 4.7) which 131 

also differ in their choice of convection schemes. There are also two institutes with the same RCM and 132 

LSM (WRF and Noah-MP) but different parameterizations, as they use distinct planetary boundary layer 133 

(PBL) schemes. A detailed description of the RCMs is provided by Davin et al. (2020). For the analyses 134 

in the present study, we use daily and monthly model outputs for incoming shortwave radiation and 135 

snow cover. For deriving SASI, the native grid of the models was kept, minimising data loss. The other 136 

fields were interpolated to a common 0.5°x0.5° grid using Climate Data Operators (CDO) bilinear 137 

remapping. 138 

2.1.3 Snow-buried fraction of vegetation in models 139 

At high-latitudes, the effects of snow cover on regional climate strongly depend on the 140 

prescribed vegetation cover. Removal of boreal forests locally reduces surface air temperature and 141 

precipitation by increasing surface albedo and the duration of the snow cover and by decreasing plant 142 

evapotranspiration. Today, the role of forest albedo on winter-spring climate in the high-latitudes is well 143 

acknowledged based on field campaigns such as the Boreal Ecosystem-Atmosphere Study (BOREAS; 144 

Betts et al., 2001) and on modeling studies (e.g., Betts and Ball, 1997; Betts et al., 1996; Betts et al., 145 

2001; Bonan, 2008; Davin and Noblet-Ducoudré, 2010; Mooney et al., 2021). These studies led to 146 

implementing more sophisticated snow sub-models in LSMs that account for the burial of vegetation by 147 

snow cover. 148 

In the LUCAS ensemble, all LSMs, except for the TERRA-ML LSM used by CCLM-TERRA, 149 

adjust the effective Leaf and Stem Area Index for snow-buried vegetation by adopting similar 150 

approaches. Being a bulk/one-dimensional LSM, TERRA-ML applies an infinitesimal vegetation layer 151 
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on top of the soil surface and has no canopy (i.e., vegetation lays flat on the surface). However, to 152 

correctly simulate the effect of trees masking the ground snow on radiation, TERRA-ML applies a 153 

reduction factor for the snow albedo when vegetation such as forest canopies masks the snow. Hence, 154 

when vegetation is snow-buried, all LSMs account for a highly reflecting surface in the calculation of 155 

surface albedo. In Table 1, interested readers may find references to RCM-dependent snow-buried 156 

vegetation schemes. 157 

In terms of snow schemes, some LSMs contain more sophistication than others. Compared to 158 

previous CLM versions (i.e., CLM4.0 and CLM4.5), CLM5.0 used by CCLM-CLM5.0 counts more 159 

snow layers (12 instead of 5), treats separately canopy intercepted snow and more realistically captures 160 

temperature and wind effects on the density of fresh snow (Lawrence et al., 2020; van Kampenhout et 161 

al., 2017). The RCA4 model system and its internal LSM, used in RCA, include sub-grid orography in 162 

the snow cover to capture inhomogeneous snow cover in mountainous areas. Noah-MP allows for 3 163 

snow layers, depending on the total snow depth. To provide a better representation of the ground heat 164 

fluxes, the first very layer is only 0.045 m thick. Noah-MP also considers snow interception by the 165 

canopy, accounting for wind and temperature effects on snow accumulation and precipitation from the 166 

canopy, snow melting and refreezing (Niu and Yang, 2004). The ground snow cover fraction is a 167 

function of the snow depth and density and ground roughness (Niu et al., 2007) 168 

2.2 Reanalyses and remote sensing data 169 

Reanalysis data from ERA5-Land (Muñoz Sabater, 2019; Muñoz Sabater et al., 2021) and 170 

MERRA-2 (Gelaro et al., 2017) as well as satellite data from the Moderate Resolution Imaging 171 

Spectroradiometer (MODIS; Hall and Riggs, 2016) are used to evaluate the modelled snow distribution 172 

and radiation in the RCMs. Specifically, we use monthly data for snow cover (variable “fractional area 173 

of land snow cover” in MERRA-2), incoming shortwave radiation from ERA5-Land and MERRA-2, 174 

and daily snow cover data from the MODIS sensors AQUA and TERRA. The reanalysis data are 175 

interpolated bilinearly to the common 0.5°x0.5° grid (see Section 2.2). Reanalysis data cover the time 176 

period 1986-2015 and MODIS data the period 2003-2015. 177 

For MODIS data, the following processing steps are applied: 178 
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1. Data are masked according to the prevailing cloud cover since high cloud cover prevents a 179 

correct estimation of snow cover. We apply two different thresholds (20% and 50%) to the 180 

percent of clouds in each cell. 181 

2. Only data flagged as “best”, “good”, and “ok” are used while all other data are masked. 182 

3. Data are conservatively remapped to the common 0.5°x0.5° grid. Conservative remapping is 183 

chosen due to the large difference in resolution between the original MODIS data (0.05°) and 184 

the target grid (0.5°). It considers all grid points in the interpolation while, e.g., bilinear 185 

interpolation would only consider the neighbouring grid cells of the target grid. 186 

4. A land-sea mask is applied to make sure that only land grid points are included in the analysis. 187 

Only grid points with more than 50% land fraction are included. 188 

The masking for MODIS data implies that single grid points can contribute differently to the average 189 

over one region. To make the models and reanalyses comparable, each grid point is weighted by the 190 

amount of available MODIS data (individually for each month of the whole time period). 191 

 192 

2.3 Snow Albedo Sensitivity Index (SASI) and geographical scope 193 

SASI is an index that quantifies the climate forcing due to the snow albedo effect (Xu and 194 

Dirmeyer, 2013). It is defined as: 195 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ∗  𝜎𝜎(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠)∆𝛼𝛼           (1)  196 

where 𝑆𝑆𝑆𝑆 is the net shortwave radiation at the surface, 𝜎𝜎(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠) is the standard deviation of snow cover 197 

fraction, and ∆𝛼𝛼 is the average difference between the albedo of a snow-covered surface and the albedo 198 

of a snow-free surface. ∆𝛼𝛼 is a constant value of 0.4 as assumed in Xu and Dirmeyer (2013). SASI is in 199 

Wm-2 and high values of SASI, such as 10 Wm-2, indicate a strong climate forcing from the snow albedo 200 

effect (Xu and Dirmeyer, 2013).  201 

To better understand geographical differences in the role of snow for land-atmosphere coupling, 202 

we focus on three sub-regions over Europe, with different climate, vegetation cover, topography or 203 

latitudes: Scandinavia [5oE-30oE, 55oN-70oN], East Europe [16 oE-30oE, 44oN-55oN] and East Baltic 204 

[20oE-40oE, 50oN-62oN] (see Figure 1). The first two regions, Scandinavia and East Europe correspond 205 
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to regions 8 and 5 of the PRUDENCE project (Prediction of Regional scenarios and Uncertainties for 206 

Defining EuropeaN Climate change risk and Effects; Christensen and Christensen, 2007). The three 207 

selected regions differ in terms of climate but also in terms of vegetation: vegetation in Scandinavia is 208 

mostly trees while the two other regions are covered by cropland and trees. The Scandinavian region 209 

also stands out because of its geographical location covering high latitudes, where the incoming 210 

shortwave radiation is very small or zero during winter. In comparison with the East Baltic region, which 211 

is covered by plains, the East Europe and Scandinavia regions have a more complex topography as they 212 

encompass the Carpathian and Scandinavian mountains, respectively.  213 

 214 

3. Results and discussion 215 

3.1 SASI in satellite observations, reanalyses and RCMs over Europe 216 

In Figure 2, we first show the geographical distribution of SASI over Europe based on satellite 217 

observations, the ERA5-Land reanalysis and the LUCAS models from January to June, averaged over 218 

the 1986-2015 period. Focusing first on the satellite observations and ERA5-Land, an increase in SASI 219 

can be observed during the first months of the year when solar radiation increases and snow is 220 

accumulating (accumulation period), reaching a maximum in March or April depending on the region 221 

examined, and then decreasing when snow starts melting (ablation period). At higher latitudes snow 222 

melts later than at mid-latitudes, giving rise to SASI values during spring, as shown in Figure 2. Then, 223 

SASI reaches very low values in May and June when the snow has melted almost entirely. This is as 224 

expected, and the overall seasonal trend is consistent with Xu and Dirmeyer (2013). The model data 225 

exhibits the same overall spatiotemporal cycle in SASI as the satellite observations and ERA5-Land. 226 

However, large differences can be seen between the simulations in terms of amplitude or pattern, 227 

especially during the ablation period. In March over the Carpathian Mountains, for example, SASI varies 228 

between 1 Wm-2 for WRFa-NoahMP and RCA, and 10 Wm-2 for CCLM-CLM5.0 and RegCMa-229 

CLM4.5. It is also noteworthy that for almost all the models, SASI is close to zero everywhere in 230 

continental Europe in May and June, as the snow has almost entirely melted, while in May for RegCMb-231 

CLM4.5 and CCLM-VEG3D there are still high values of SASI (~10 Wm-2).  232 

 233 
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The ensemble of simulations run for LUCAS enable us to discuss the role of different 234 

components of the RCMs, such as the land and atmosphere models or the choice in parameterizations. 235 

For example, WRFc-NoahMP and WRFa-NoahMP show noticeable differences in the amplitude and 236 

pattern of SASI (Fig. 2), even though they use the same LSM (Noah-MP) and atmospheric model 237 

(WRF). Their differences come from parameterizations (planetary boundary layer and convection), thus 238 

demonstrating the importance of atmospheric processes and their model representation for representing 239 

snow processes. Then, WRF configuration coupled with the LSM CLM4.0 (WRFb-CLM4.0) also shows 240 

different results from when it is coupled with NOAH-MP. For example, WRFa-NoahMP shows an 241 

earlier poleward migration of high SASI values compared to WRFb-CLM4.0, moving north about one 242 

month before WRFb-CLM4.0. Large differences can also be observed between CCLM-CLM5.0, 243 

CCLM-TERRA, and CCLM-VEG3D; they all use the same RCM but different LSMs. In contrast to the 244 

two other Cosmo configurations, CCLM-VEG3D uses a snow flag for snow cover (i.e., indicates if snow 245 

is present or not; Section 2.3), explaining its different representation of SASI. This suggests that SASI 246 

is very sensitive to the configurations of and process parameterizations in the climate model. In 247 

particular, the choice of the LSM or certain parameterizations (e.g. convection scheme) highly influence 248 

the representation of the climate forcing from the snow albedo effect. The role of the LSM in this context 249 

will be investigated further in the coming sections of the article.  250 

 251 

3.2 Transition between the accumulation and ablation periods  252 

 253 

To further investigate the differences in snow albedo coupling between the simulations and the 254 

observation-based datasets during the accumulation and ablation periods, a time-series of SASI from 255 

January to June is presented in Figure 3 for the three sub-regions East Europe, East Baltic and 256 

Scandinavia (see Figure 1 for their extents). Before looking at the differences between the different 257 

datasets, it is interesting to compare the amplitude of SASI between East Baltic and East Europe (mid-258 

latitude regions) with Scandinavia (high-latitude region), which shows slightly higher values of SASI 259 

over the mid-latitude regions in satellite observations, ERA5 and most of the RCMs. This confirms 260 

previous findings from Xu and Dirmeyer (2013), which estimated higher values of SASI in mid- versus 261 
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high-latitude regions in satellite observations. However, even with higher values at mid-latitudes, this 262 

result suggests that the radiative forcing due to the snow albedo effect is not negligible over high-latitude 263 

regions in winter and spring. This result shows again the importance of the snow-atmosphere processes 264 

in mid- and high-latitudes in the Northern hemisphere.  265 

Then, coming back to the comparison of the different datasets, in all three regions, the models 266 

and observations indicate a pronounced peak in SASI. The maximum in SASI marks the transition 267 

between the accumulation and ablation periods. The timing of this transition depends on the region 268 

examined due to, for example, latitudinal differences in incoming solar radiation. Although the 269 

amplitude of the peak is very similar between the satellite observations and ERA5-Land, it is interesting 270 

to see that the timing differs between them, over Scandinavia and East Baltic. Over East Europe it 271 

happens in March for both the satellite observations and ERA5, for East Baltic in March (satellites) or 272 

April (ERA5) and for Scandinavia in April (satellites) or May (ERA5). The origin of these differences 273 

has not been clarified yet. This might be due to the higher elevations of these two regions compared to 274 

East Europe as complex orography is a driving factor for the spatial heterogeneity of precipitation 275 

(Grunewald et al., 2014).  276 

The LUCAS simulations also show a pronounced peak in SASI in all regions (Fig. 3), however 277 

they do not all agree on the timing and the amplitude of the signal. For example, in the East Baltic 278 

region, some models (WRFc-NoahMP and WRFa-NoahMP) simulate a peak in March, others in April 279 

(WRFb-CLM4.0 and CCLM-CLM5.0) or even in May (RegCMb-CLM4.5 and CCLM-VEG3D). In 280 

general, RegCMb-CLM4.5 and CCLM-VEG3D tend to present the latest peak in SASI as well as the 281 

highest amplitude in the signal. On the other hand, WRFa-NoahMP tends to produce an earlier peak and 282 

lower values of SASI, especially over East Europe. These differences might be related to the way snow 283 

melts in the different models and will be further explored in the next section. More generally, we see 284 

that during the accumulation period, all the datasets are in better agreement compared to the ablation 285 

period (Fig. 3). For East Europe and East Baltic, the spread largely increases in March and for 286 

Scandinavia from April until the end of the season, when the snow is melting.  287 

This large model spread during the ablation period is further confirmed by Figure 4 showing the 288 

pattern correlation between the simulations and ERA5-Land from January to June. For many models, 289 
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the correlation is high at the beginning of the season but strongly decreases in March or April, when the 290 

snow starts melting. These results are in agreement with previous studies showing the difficulties of 291 

climate models to represent snow processes during the ablation period (Essery et al. 2009). Given the 292 

dominant role of land surface processes during the ablation period, this suggests that the choice of the 293 

LSM is more critical for the representation of the climate forcing from the snow albedo effect than the 294 

atmospheric model in spring. For calculating snow-covered areas at different stages of ablation, a correct 295 

representation of the landscape type is important (Pomeroy et al., 1998). Figure 4 also shows that the 296 

behavior of the RCMs is different between East Europe and East Baltic versus Scandinavia. Over the 297 

latter region, most RCMs differ from the reanalysis indicated by low correlations. Earlier studies showed 298 

that snow accumulates or melts very differently in an open region compared to a forested region (Jonas 299 

and Essery, 2014; Moeser et al., 2016). Our results suggest that RCMs represent snow processes better 300 

in open spaces like the East Baltic than in forest-covered regions like Scandinavia. The relationship 301 

between the representation of SASI and land cover will be further explored in the companion article, 302 

Part II. The mountains in Scandinavia could also be a source of biases since the resolution of the RCM 303 

simulations (0.44°) can be considered insufficient to represent the more complex topography of 304 

Scandinavia. 305 

 306 

3.3 Inter-model differences in SASI   307 

To better understand the origin of the differences in SASI across RCMs, we explore the 308 

relationship between SASI and its components, surface snow cover and shortwave radiation, during the 309 

accumulation and ablation periods. Figure 5 presents a comparison of the averaged monthly surface 310 

snow cover for the LUCAS simulations, the reanalyses MERRA-2 and ERA5-Land as well as the 311 

satellite observations from MODIS, averaged over our three regions of interest, from January to May. 312 

First, it should be noted that differences can be observed between the reanalyses and the satellite 313 

observations as the different datasets have their own limitations or biases. For example, the surface snow 314 

cover in East Baltic in March is ~0.6 for MODIS, ~0.7 for MERRA-2 and ~0.8 for ERA5-Land. It is 315 

therefore important to include several observation-based datasets to evaluate the ability of climate 316 

models to represent snow cover and estimate the uncertainties associated with this variable. The 317 
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representation of snow cover in RCMs can also be different depending on the model examined. Over 318 

Scandinavia, snow cover varies between 0.4 for WRFa-NoahMP and 1.0 for WRFb-CLM4.0 in January. 319 

For the same month, the differences are even higher for the other two regions, varying between 0.3 for 320 

WRFa-NoahMP and 1.0 for WRFb-CLM4.0 in East Baltic, and 0.1 for WRFa-NoahMP and 1.0 for 321 

WRFb-CLM4.0 in East Europe. Although there are already differences during the accumulation period, 322 

Figure 5 shows that the spread increases when the snow starts melting. This result indicates a common 323 

bias between the models that highly disagree with the reanalysis and observations, regarding snow cover 324 

in spring. This confirms the result from the previous section as it is again pointing towards a bias from 325 

LSMs as this part of the RCM is primordial for representing land surface processes related to snow cover 326 

during the ablation period.  327 

Based on Figure 3, RegCMb-CLM4.5 and CCLM-VEG3D were identified as models with 328 

higher values in SASI during the ablation period and later peaks for all regions. Figure 5 shows that this 329 

behavior can be at least partly attributed to their representation of snow cover. During the ablation 330 

period, they all tend to produce higher values of snow cover compared to the other models and also to 331 

keep high values later in the season. This behavior is confirmed by the black dots under these two models 332 

during the ablation period as they indicate when the models are outside the range of the reference 333 

datasets (MERRA-2, ERA5-Land and MODIS). This is particularly striking for CCLM-VEG3D. 334 

Similarly, the low SASI peaks for WRFa-NoahMP, which also occur earlier than the peaks for other 335 

models (Figure 3), might be related to the lower values in snow cover and the small interannual snow 336 

cover variability compared to the other RCMs, particularly in East Europe (Figure 5). Again, this is 337 

confirmed by the black dots indicated under the model. The differences in snow cover are also reflected 338 

by the rate of snow melting for the different RCMs (Supplemental Material; Figure S1). The models 339 

having high snow cover late in spring (RegCMb-CLM4.5 and CCLM-VEG3D) tend to have later snow 340 

melt than the other models while WRFa-NoahMP, showing reduced snow cover earlier than the other 341 

models, tends to melt sooner. 342 

Another component of SASI is shortwave radiation at the surface, which is presented in Figure 343 

6 for the LUCAS simulations, the reanalyses MERRA-2 and ERA5-Land, averaged over our three 344 

regions of interest, from January to May. The comparison between the RCMs and the reanalysis shows 345 
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noticeable differences for some models. Both REMO-iMOVE and CCLM-VEG3D exhibit very 346 

different results in terms of surface shortwave radiation compared to the datasets as shown by the black 347 

dots on the figure, showing much lower and higher values, respectively. However, even with these 348 

discrepancies, they both reproduce SASI reasonably well. This seems to indicate that the differences in 349 

the representation of the forcing from the snow albedo effect are mostly driven by differences in the 350 

representation of snow cover in the models. This is confirmed by Figure 7 showing the average 351 

correlation across models between SASI and shortwave radiation (left) as well as SASI and snow cover 352 

(right) for the LUCAS models. Scandinavia and East Baltic present similar results with significant, 353 

positive correlations between SASI and snow cover for almost all months, associated with positive but 354 

not significant correlations between SASI and shortwave radiation. For East Europe, the correlation 355 

between SASI and snow cover is low and not significant in January and February but remains high and 356 

significant the rest of the time period. In parallel, the correlation between SASI and downward 357 

shortwave radiation at the surface is negative for almost all months and not significant. Overall, high 358 

and significant correlations often appear between SASI and snow cover for the three regions from 359 

January to June. On the other hand, the correlations between SASI and shortwave radiation are low and 360 

usually not significant. This indicates that the differences in the representation of the forcing from the 361 

snow albedo effect are mostly driven by differences in the representation of snow cover in the models.  362 

 363 

4. Conclusion 364 

Previous work already showed the difficulty for climate models to represent snow variables or 365 

processes, such as snow cover and depth (Matiu et al., 2020) or the SAF (Fletcher et al., 2015), however 366 

the origin of the differences between the models is not clear yet. In this work, we focus on the ability of 367 

RCMs to simulate the radiative forcing from the snow albedo effect in winter and spring over Europe 368 

and explore the origin of the differences between the RCMs. This forcing is represented by the index 369 

SASI, which quantifies the strength of the coupling between snow and albedo. Ten RCMs from the 370 

CORDEX Flagship Pilot Study LUCAS are compared to satellite observations and reanalysis including 371 

ERA5-Land and MERRA-2. These simulations are part of the control experiment of LUCAS, which 372 
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uses the standard EURO-CORDEX domain (Jacob et al., 2014) with a horizontal grid resolution of 0.44° 373 

(around 50 km). 374 

The results show that climate models are able to reproduce some of the SASI characteristics 375 

(e.g. existence of a peak, amplitude of the peak) compared to reanalysis and satellite observations 376 

(Section 3.1), even if large differences appear between the RCMs. The climate models’ ability to 377 

represent SASI is highly related to their representation of snow cover (Section 3.3), which can be 378 

difficult to represent for climate models (Matiu et al., 2020). Our results also suggest that the models’ 379 

capability highly differs between the accumulation and ablation periods. Most models have much lower 380 

agreement with reanalyses and satellite observations in the ablation period, with some exceptions (e.g. 381 

CCLM-CLM5.0 over East Europe), indicating a common bias regarding snow cover in spring, pointing 382 

towards a bias from LSMs. This bias seems to be common to most LSMs even if they are based on 383 

different assumptions and parameterizations (see Section 2.3). It is also interesting that even though 384 

CCLM-TERRA is not as advanced in terms of snow modeling compared to the other models (e.g. 385 

Section 2.1.3), it still manages to represent SASI reasonably well over Europe. In addition, the 386 

representation of the sub-grid scale surface heterogeneity (Table 1; PFT-dominant versus PFT-tile) does 387 

not seem to affect the ability of RCMs to represent snow cover or SASI.  388 

Although it is difficult to identify the origin of the bias in the RCMs, an increase in spatial 389 

resolution might improve the simulation of snow cover and therefore the representation of SASI. For 390 

example, over Scandinavia, an increase in spatial resolution would provide a better representation of the 391 

complex topography of the region as well as its forested areas, which may lead to an improved 392 

simulation of the coupling between snow and albedo. The coming phases of LUCAS, phases 2 and 3, 393 

could help answer this question as they will produce simulations at a higher spatial resolution, 12 km 394 

and convection-permitting (<3km) respectively. Taking advantage of the different configurations of the 395 

LUCAS simulations, we have also explored the role of distinct parts of the models in their ability to 396 

represent SASI. The first part of this work has already emphasized the role of the LSMs, but other 397 

components can also play an important role. WRFc-NoahMP and WRFa-NoahMP, even though using 398 

the same RCM and LSM, show noticeable differences in the amplitude and pattern of SASI. Their 399 
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differences in parameterizations (planetary boundary layer and convection) are certainly affecting the 400 

way they represent SASI, highlighting the impact of such choices and the role of atmospheric processes.  401 

Mid- and high-latitude areas are also specifically examined looking at three sub-regions: 402 

Scandinavia, East Europe and East Baltic (Section 3.2). The comparison of the three sub-regions shows 403 

the difficulties for models to simulate SASI over Scandinavia during the accumulation and ablation 404 

periods. The simulation of snow processes in a forested region is more challenging than in an open 405 

region (Jonas and Essery, 2014; Moeser et al., 2016). Thus, potentially climate models can have more 406 

difficulties representing snow processes in forest-covered regions like Scandinavia compared to open-407 

land regions like East Baltic. The relationship between the representation of SASI and land-cover will 408 

be further explored in the companion article (Part II), analyzing the other experiments (GRASS and 409 

FOREST) from LUCAS. Finally, the comparison of mid- versus high-latitude regions shows slightly 410 

higher values of SASI over the mid-latitude regions in satellite observations, ERA5 and most of the 411 

RCMs. This confirms previous findings from Xu and Dirmeyer (2013), which estimated higher values 412 

of SASI in mid- versus high-latitude regions in satellite observations. Our results also suggest that the 413 

climate forcing due to the snow albedo effect is not negligible over high-latitude regions in winter and 414 

spring. This is important since often the land-atmosphere coupling is considered weaker at higher 415 

latitudes (Xu and Dirmeyer, 2011) but it is also possible that this coupling happens through snow and is 416 

therefore underestimated.  417 
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Figures and Tables  668 

 669 

Figure 1: Map showing the location of the three regions of interest: Scandinavia (red), East Baltic (pink) 670 

and East Europe (blue).  671 

 672 
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 673 

Figure 2: Spatial maps of SASI (Wm-2) for satellite observations, the reanalysis ERA5-Land and the 674 

ten regional climate simulations from the EVAL experiment of LUCAS from January to June, averaged 675 

over the time period 1986-2015.  676 
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 678 

Figure 3: Time series of the spatial average of SASI for the satellite observations, the reanalysis ERA5-679 

Land and the ten regional climate simulations from the EVAL experiment of LUCAS in Scandinavia, 680 

East Europe and East Baltic (see Figure 1 for their spatial extent). Data are averaged over the time period 681 

1986-2015.  682 
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 683 

Figure 4: As in Figure 3 but for the pattern correlation between SASI and ERA5-Land for the LUCAS 684 

simulations.  685 
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 686 

Figure 5: Snow cover for the 10 RCMs, MERRA-2, ERA5-Land, and MODIS satellite observations 687 

(using only data from days and pixels with less than 50% cloud cover) for January to May. The box-688 

and-whisker-plots show the interannual variability of snow cover over 1986-2015, with the bar 689 

representing the median, boxes the interquartile range, and whiskers the minimum/maximum values. 690 

Dots indicate models lying outside the range of the reference datasets MERRA-2, ERA5-Land, and 691 

MODIS (i.e., the 25th (75th) model percentile is higher (lower) than the highest 75th (lowest 25th) 692 

quantile of the reference datasets). 693 

 694 

 695 
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 696 

Figure 6: Downward surface shortwave radiation for the 10 RCMs for MERRA-2, and ERA5-Land, for 697 

January to May. The box-and-whisker-plots show the interannual variability of downward shortwave 698 

radiation over 1986-2015, with the bar representing the median, boxes the interquartile range, and 699 

whiskers the minimum/maximum values. Dots indicate models lying outside the range of the reference 700 

datasets MERRA-2, ERA5-Land, and MODIS (i.e., the 25th (75th) model percentile is higher (lower) 701 

than the highest 75th (lowest 25th) quantile of the reference datasets). 702 
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 704 

Figure 7: Pearson correlation between SASI and shortwave radiation (left), and SASI and standard 705 

deviation of snow cover (right) calculated across RCMs for the three regions Scandinavia, East Baltic, 706 

and East Europe for the months January to June during 1986-2015. The values represent the variable 707 

(shortwave radiation or variability in snow cover) to which the inter-model variability of SASI is 708 

predominantly related to. Bold values indicate statistical significance at the 0.05 level (two-tailed p-709 

value). 710 
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Institute 
ID 

RCM LSM Representation of 
sub-grid scale 

surface 
heterogeneity 

Phenology Snow- vegetation 
interaction 

Name of the 
models 

BCCR WRF v3.8.1 
[Skamarock 
et al., 2008] 

NoahMP 
[Niu et al., 
2011] 

PFT-dominant Prescribed Deardorff, 1978; Niu 
and Yang, 2007 

WRFc-NoahMP 

CUNI RegCM 
v4.7 [Giorgi 
et al., 2012] 

CLM4.5 
[Oleson et 
al., 2013]  

PFT-tile Prescribed Wang and Zeng, 
2009 

RegCMb-CLM4.5 

ETH Cosmo_5.0
_clm9 
[Soerland et 
al., 2021] 

CLM5.0 
[Lawrence 
et al., 
2020] 

PFT-tile Prescribed Wang and Zeng, 
2009; Lawrence et 
al., 2020; van 
Kampenhout et al., 
2017 

CCLM-CLM5.0 

GERICS REMO200
9 [Jacob et 
al., 2012] 

iMOVE 
[Wilhelm 
et al., 
2014] 

PFT-tile Interactive Roeckner et al., 
1996; Kotlarski, 
2007 

REMO-iMOVE 

ICTP RegCM 
v4.6 [Giorgi 
et al., 2012] 

CLM4.5 
[Oleson et 
al., 2013] 

PFT-tile Prescribed Wang and Zeng, 
2009 

RegCMa-CLM4.5 

IDL WRF 
v3.8.1D 
[Skamarock 
et al., 2008] 

NoahMP 
[Niu et al., 
2011] 

PFT-dominant Prescribed Deardorff, 1978; Niu 
and Yang, 2007 

WRFa-NoahMP 

KIT Cosmo_5.0
_clm9 
[Soerland et 
al., 2021; 
Rockel et 
al., 2008] 

VEG3D 
[Braun and 
Schädler, 
2005] 

PFT-dominant Prescribed  Grabe, 2002 CCLM-VEG3D 

SMHI RCA4 
[Strandberg 
et al., 2015] 

Internal 
[Samuelss
on et al., 
2006] 

PFT-tile Prescribed 
Samuelsson et al., 
2015 

RCA 

AUTH WRF 
v3.8.1 
[Skamarock 
et al., 2008] 

CLM4.0 
[Oleson et 
al., 2010] 

PFT-tile Prescribed Wang and Zeng, 
2009 

WRFb-CLM4.0 

CLMcom
-JLU 

Cosmo_5.0
_clm9 
[Soerland et 
al., 2021] 

TERRA-
ML 
[Schrodin 
and Heise, 
2002] 

PFT-dominant Prescribed  Doms et al., 2013 CCLM-TERRA 

Table 1: Summary of participating RCMs and their LSMs. 718 
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